Home
Class 12
MATHS
14.cos^(3)2x+3cos2x=4(cos^(6)x-sin^(6)x)...

14.cos^(3)2x+3cos2x=4(cos^(6)x-sin^(6)x)

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that cos^(3)(2x)+3cos2x=4(cos^(6)x-sin^(6)x)

if sin x+sin^(2)x=1 then cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x=

The sum of the solutions x in of the equation frac{3 cos 2x cos^3 2x}{cos^6 x - sin^6 x} = x^3 - x^2 6 is

Value of sin^(6)x+cos^(6)x+sin^(4)x+cos^(4)x+3+5sin^(2)x cos^(2)x is

If sinx + sin^(2)x =1 then cos^(12)2x + 3cos^(10)x+3cos^(8)x + cos^(6)x =

3(sin x + cos x )^(4) + 6(sin x - cos x )^(2) + 4(sin^(6) x + cos^(6) x )=

3(sin x- cos x )^(4) + 6(sin x+ cos x )^(2) +4 (sin ^(6) x+ cos ^(6) x)=

3(sin x- cos x )^(4) + 6(sin x+ cos x )^(2) +4 (sin ^(6) x+ cos ^(6) x)=

2(sin^(6) x + cos^(6) x ) -3(sin^(4) x + cos^(4) x ) +1=

Prove that sin^(6)x + cos^(6)x = 1 - 3 sin^(2) x cos^(2)x .