Home
Class 12
MATHS
" The range of "sqrt((1-cos x)sqrt((1-co...

" The range of "sqrt((1-cos x)sqrt((1-cos x)sqrt((1-cos x)sqrt(--oo))))

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the following function is f(x)=sqrt((1-cos x)sqrt((1-cos x)sqrt((1-cos x)sqrt(cdots oo))))(0,1)(b)(0,(1)/(2))(c)(0,2)(d) none of these

Find range of y=sqrt((1-cos x)sqrt((1-cos x)...oo))

Find the domain of each of the following functions: f(x)=sqrt((1-cos x)sqrt(((1-cos x))sqrt(((1-cos x))sqrt(cdots...cdots*oo))))

tan^(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}

If pi

Simplest form of tan^(-1)((sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))), pi lt x lt (3 pi)/(2) is:

If the function f(x)=(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x)) If the value of f((pi)/(3))=a+b sqrt(c) then a+b+c=

tan ^(-1) ""{(sqrt(1+cos x)+sqrt(1-cos x)}/{sqrt(1+cosx)-sqrt(1-cos x)}}=(pi)/(4)+(x)/(2) , 0 lt x lt (pi)/(2)

If x in (pi, 2pi) , prove that ((sqrt(1+cosx))+(sqrt(1-cos x)))/((sqrt(1+cos x)) -sqrt(1-cos x)) = cot(pi/4 +x/2)