Home
Class 11
MATHS
" 5.Show that "lim(x rarr0)(e^(1/x)-1)/(...

" 5.Show that "lim_(x rarr0)(e^(1/x)-1)/(e^(1/x)+1)" does not exist."

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (e^(1/x)-1)/(e^(1/x)+1) =

lim_(x rarr0)(e^(x)-1)/(log(1+x))

Show that lim_(x rarr0)(e^(x)-1)/(sqrt(1+x)-1)=2

lim_(x rarr0)((e^(x)-x-1)/(x))

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

Show that (lim)_(x rarr0)(e^((1)/(x))-1)/(e^((1)/(z))+1)does neg e xi st

lim_(x rarr 0^+)(x e^(1//x))/(1+e^(1//x))=

Show that lim_(x rarr 0^+) (1+x)^(1/x) =e