Home
Class 9
MATHS
" (e) "x^(2)-1-2a-a^(2)...

" (e) "x^(2)-1-2a-a^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If I=lim_(x to 0) sin((e^(x)-x-1-(x^(2))/(2))/(x^(2))) , then limit

Evaluate: int_(0)^(e-1)((x^(2)+2x-1)/(2))/(x+1)dx+int_(1)^(e)x log xe^((z^(2)-2)/(2))dx

lim_(xrarroo) (e^(1/x^(2))-1)/(2tan^(1)(x^(2))-pi)=

f(x)=int(e^(x^(2))(4x^(2)-1))/(x^((3)/(2)))dx

int ((3-x^(2))e^(x))/(1-2x+x^(2)) dx = e^(x).f(x) + c, then f(x) =

int(2e^(5x)+e^(4x)-4e^(3x)+4e^(2x)+2e^(x))/((e^(2x)+4)(e^(2x)-1)^(2))dx= a) "tan"^(-1)(e^(x))/(2)-(1)/(e^(2x)-1)+C b) "tan"^(-1)e^(x)-(1)/(2(e^(2x)-1))+C c) "tan"^(-1)(e^(x))/(2)-(1)/(2(e^(2x)-1))+C d) 1-"tan"^(-1)((e^(x))/(2))+(1)/(2(e^(2x)-1))+C

lim_(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

lim_(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

lim_(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to