Home
Class 11
MATHS
Let A=[[cos theta,sin theta],[-sin theta...

Let A=[[cos theta,sin theta],[-sin theta,cos theta]]" ,then find "lim_(n rarr oo)(A^(n))/(n)," where "theta in R

Promotional Banner

Similar Questions

Explore conceptually related problems

If [[cos theta,sin theta],[-sin theta,cos theta]], then lim _(n rarr infty )A^(n)/n is (where theta in R )

If A= [[cos theta,sin theta],[-sin theta,cos theta]], then lim _(n rarr infty )A^(n)/n is (where theta in R )

If A= [[cos theta,sin theta],[-sin theta,cos theta]], then lim _(n rarr infty )A^(n)/n is (where theta in R )

If [[cos theta,sin theta],[-sin theta,cos theta]], then lim _(n rarr infty )A^(n)/n is (where theta in R )

If A= [[cos theta,sin theta],[-sin theta,cos theta]], then lim _(n rarr infty )A^(n)/n is (where theta in R ) a. a zero matrix b. an identity matrix c. [[0,1],[-1,0]] d. [[0,1],[0,-1]]

IfA=[[cos theta,sin theta-sin theta,cos theta]], then lim_(x>oo)(1)/(n)A^(n) is

If A=[(cos theta, sin theta),(- sin theta, cos theta)] then lim_(nto oo)1/n A^(n) is

Let A=[(cos theta, -sin theta),(- sin theta,-cos theta)] then the inverse of a is

cos m theta-sin n theta=0