Home
Class 20
MATHS
[" यदि "sin^(-1)x+sin^(-1)y+sin^(-1)z=pi...

[" यदि "sin^(-1)x+sin^(-1)y+sin^(-1)z=pi," तो थिद्ध कीजिए कि "],[qquad x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x + sin^(-1)y + sin^(-1)z =pi , prove that xsqrt(1 - x^(2)) + y sqrt(1 -y^(2)) + z sqrt(1-z^(2))= 2xyz .

If sin^(-1) x + sin^(-1) y + sin^(-1) z = pi" , prove that " x sqrt(1-x^(2) ) + y sqrt(1 - y^(2)) + zsqrt( 1 - z^(2)) = 2 xyz .

If sin^(-1) x + sin^(-1) y + sin^(-1) z = pi" , prove that " x sqrt(1-x^(2) ) + y sqrt(1 - y^(2)) + zsqrt( 1 - z^(2)) = 2 xyz .

if,sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, prove that: x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin ^(-1 )""x + sin ^(-1) y + sin ^(-1) z= pi prove that , x sqrt(1-x^(2))+ysqrt(1-y^(2))+zsqrt( 1-z^(2))= 2 xyz.

If sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = pi, Prove x sqrt (1-x ^ (2)) + y sqrt (1-y ^ (2) ) + z sqrt (1-z ^ (2)) = 2xyz

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin^(-1) x +sin^(-1) y + sin^(-1) z =pi , "show that" x sqrt(1-x^2)+y sqrt(1-y^2) +zsqrt(1-z^2)=2 xyz

If Sin^(-1)(x)+Sin^(-1)(y)+Sin^(-1)(z) = pi , prove that xsqrt(1-x^(2)) + ysqrt(1-y^(2)) +zsqrt(1-z^(2)) = 2xyz .