Home
Class 12
MATHS
int(1)^(1)(3^(6))/(1+t^(2))dt...

int_(1)^(1)(3^(6))/(1+t^(2))dt

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If int_(0)^(1)(e^(t))/(1+t)dt=a, then find the value of int_(0)^(1)(e^(t))/((1+t)^(2))dt in terms of a

If int_(0)^(1)(e^(t))/(1+t)dt=a then int_(0)^(1)(e^(t))/((1+t)^(2))dt is equal to

If int_(0)^(1)(e^(t))/(1+t)dt=a then find the value of int_(0)^(1)(e^(t))/((1+t)^(2))dt in terms of a .

If I_(1) = int_(x)^(1) (1)/(1+t^(2))dt and I_(2)=int_(1)^(1/x) (1)/(1+t^(2))dt for x gt0 , then

If I_(1)=int_(x)^(1)(1)/(1+t^(2)) dt and I_(2)=int_(1)^(1//x)(1)/(1+t^(2)) dt "for" x gt0 then,

If I_(1)=int_(x)^(1)(1)/(1+t^(2))dt and I_(2)=int_(1)^(1//x)(1)/(1+t^(2))dt for xgt0 , then