Home
Class 12
MATHS
The value of lim(n->oo) n {1/(3n^2+8n+4)...

The value of `lim_(n->oo) n {1/(3n^2+8n+4)+1/(3n^2+16n+16)+....+n terms }` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr infty )n{(1)/(3n^(2)+8n+4)+(1)/(3n^(2) +16n+16)+...+n "terms"} is equal to

The value of lim_(n rarr infty )n{(1)/(3n^(2)+8n+4)+(1)/(3n^(2) +16n+16)+...+n "terms"} is equal to

The value of underset(nrarrinfty)limn{1/(3n^2+8n+4)+1/(3n^2+16n+16)+....+to n terms} is equal to

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

The value of lim _(xto oo) ((n !)/(n ^(n)))^((3n^(3)+4)/(4n ^(4)-1)), n inN is equal to:

The value of lim _(xto oo) ((n !)/(n ^(n)))^((3n^(3)+4)/(4n ^(4)-1)), n inN is equal to:

The value of lim_(n to oo) [(n!)/(n^(n))]^((1)/(n)) is equal to -

The value of lim_(n rarr oo)(1/(1-n^4)+8/(1-n^4)+...+n^3/(1-n^4)) is