Home
Class 12
PHYSICS
d/(dx) log(Ax + B) = 1/(Ax + B)cdot A...

`d/(dx) log(Ax + B) = 1/(Ax + B)cdot A`

Promotional Banner

Topper's Solved these Questions

  • VECTOR & CALCULUS

    MOTION|Exercise PHYSICAL EXAMPLE|11 Videos
  • VECTOR & CALCULUS

    MOTION|Exercise EXERCISE -1|76 Videos
  • VECTOR

    MOTION|Exercise Exercise - 3|18 Videos
  • WAVE MOTION

    MOTION|Exercise Exercise - 3 Section - B (Previous Years Problems)|7 Videos

Similar Questions

Explore conceptually related problems

d/(dx) e^(Ax + B) = e^(Ax + B) cdot A

d/(dx) tan (Ax + B) = "sec"^(2) (Ax + B)cdot A

Find that : (d)/(dx)(2^(log_2(x))) = a) 1 b) 0 c) 1/x d) 2^(x)log^(2)

(d)/(dx){log_(e)(ax)^(x)}

if (d)/(dx)(log_(e)x)=(1)/(x) then (d)/(dx)(log_(10)x)

The differentiation of log_(a)x(a>0,a)*!=1 with respect to x is (1)/(x log_(a)a) i.e.(d)/(dx)(log_(a)x)=(1)/(x log_(a)a)

(d)/(dx)[log((e^(4x))/(1+e^(4x)))]

The differentiation of log _(e)x,x>0is(1)/(x)* i.e.(d)/(dx)(log_(e)x)=(1)/(x)

(d)/(dx)log[sqrt((1-cos x)/(1+cos x))]=