Home
Class 12
PHYSICS
d/(dx) tan (Ax + B) = "sec"^(2) (Ax + B)...

`d/(dx) tan (Ax + B) = "sec"^(2) (Ax + B)cdot A`

Promotional Banner

Topper's Solved these Questions

  • VECTOR & CALCULUS

    MOTION|Exercise PHYSICAL EXAMPLE|11 Videos
  • VECTOR & CALCULUS

    MOTION|Exercise EXERCISE -1|76 Videos
  • VECTOR

    MOTION|Exercise Exercise - 3|18 Videos
  • WAVE MOTION

    MOTION|Exercise Exercise - 3 Section - B (Previous Years Problems)|7 Videos

Similar Questions

Explore conceptually related problems

d/(dx) e^(Ax + B) = e^(Ax + B) cdot A

d/(dx) log(Ax + B) = 1/(Ax + B)cdot A

(d)/(dx)[log(sec x+tan x)]=

(d) / (dx) [((tan ^ (2) 2x-tan ^ (2) x) / (1-tan ^ (2) 2x tan ^ (2) x)) cot3x] =

(d) / (dx) (cos ^ (2) (tan ^ (- 1) (sin (cot ^ (- 1) x))))

(d)/(dx)(log tan((pi)/(4)+(x)/(2)))= (a) cosec x (b) -cosec x (c) sec x (d) -sec x

At x=0," if " (d)/(dx) (tan^(-1) (a+bx))=1," then "a^(6)-b^(3)+1=

(d)/(dx)(tan^(-1)((x)/(sqrt(a^(2)-x^(2))))

Differentiate the function f(x) = sec (tan sqrt(x))) with respect to x,