Home
Class 12
PHYSICS
d/(dx) e^(Ax + B) = e^(Ax + B) cdot A...

`d/(dx) e^(Ax + B) = e^(Ax + B) cdot A`

Promotional Banner

Topper's Solved these Questions

  • VECTOR & CALCULUS

    MOTION|Exercise PHYSICAL EXAMPLE|11 Videos
  • VECTOR & CALCULUS

    MOTION|Exercise EXERCISE -1|76 Videos
  • VECTOR

    MOTION|Exercise Exercise - 3|18 Videos
  • WAVE MOTION

    MOTION|Exercise Exercise - 3 Section - B (Previous Years Problems)|7 Videos

Similar Questions

Explore conceptually related problems

d/(dx) log(Ax + B) = 1/(Ax + B)cdot A

d/(dx) (e^(x sin x)) =

d/(dx) tan (Ax + B) = "sec"^(2) (Ax + B)cdot A

d/(dx) (e^(x^3)) is equal to

d/dx (e^(sin√x))

(d)/(dx)(3^x)(e^x)

d/(dx)(e^xlogsin2x)=

d/(dx)[e^xlog(1+x^2)]=

d/(dx)e^(log sqrt(x)}=

(d)/(dx)(log e^(x)*log x)