Home
Class 12
PHYSICS
Assertion: If three vectors vecA,vecB an...

Assertion: If three vectors `vecA,vecB` and `vecC` satisfy the relation `vecA.vecB=0 & vecA.veC=0` then the vector `vecA` may be parallel to `vecBxxvecC`.

A

`vecB`

B

`vecC`

C

`vecB.vecC`

D

`vecBxxvecC`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • VECTOR & CALCULUS

    MOTION|Exercise EXERCISE -2 (LEVEL - I) OBJECTIVE PROBLEMS|47 Videos
  • VECTOR & CALCULUS

    MOTION|Exercise EXERCISE -2 (LEVEL - II) MULTIPLE CORRECT|13 Videos
  • VECTOR & CALCULUS

    MOTION|Exercise PHYSICAL EXAMPLE|11 Videos
  • VECTOR

    MOTION|Exercise Exercise - 3|18 Videos
  • WAVE MOTION

    MOTION|Exercise Exercise - 3 Section - B (Previous Years Problems)|7 Videos

Similar Questions

Explore conceptually related problems

Three vectors vecA, vecB and vecC satisfy the relation vecA. vecB=0 and vecA. vecC=0. The vector vecA is parallel to

If three vectors vecA, vecB and vecC satisfy the relation vecA.vecB = 0 & vecA.vecC = 0 then the vector vecA is parallel to vecB xx vecC . Statement-2 : vecA _|_vecB and vecA_|_vecC hence A is perpendicular to plane formed by vecB and vecC .

Three vectors veca,vecb and vecc satisfy the relation veca.vecb=0 and veca.vecc=0 . The vector veca is parallel to

If three unit vectors veca, vecb and vecc " satisfy" veca+vecb+vecc= vec0 . Then find the angle between veca and vecb .

Vectors vecA and vecB satisfying the vector equation vecA+ vecB = veca, vecA xx vecB =vecb and vecA.veca=1 . Vectors and vecb are given vectosrs, are

Vectors vecA and vecB satisfying the vector equation vecA+ vecB = veca, vecA xx vecB =vecb and vecA.veca=1 . Vectors and vecb are given vectosrs, are

Four vectors veca, vecb, vecc and vecx satisfy the relation (veca.vecx)vecb=vecc+vecx where vecb.veca ne 1 . The value of vecx in terms of veca, vecb and vecc is equal to

For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca equals

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .