Home
Class 12
PHYSICS
y=e^(x)lnx...

`y=e^(x)lnx`

A

`e^(x)lnx-(e^(x))/(x)`

B

`e^(x)lnx-(2e^(x))/(x)`

C

`2e^(x)lnx-(e^(x))/(x)`

D

`e^(x)lnx+(e^(x))/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = e^x \ln x \), we will use the product rule of differentiation. The product rule states that if you have two functions \( u(x) \) and \( v(x) \), the derivative of their product is given by: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] ### Step-by-Step Solution: 1. **Identify the Functions**: - Let \( u = e^x \) - Let \( v = \ln x \) 2. **Differentiate \( u \) and \( v \)**: - The derivative of \( u \) with respect to \( x \) is: \[ \frac{du}{dx} = e^x \] - The derivative of \( v \) with respect to \( x \) is: \[ \frac{dv}{dx} = \frac{1}{x} \] 3. **Apply the Product Rule**: - Now, using the product rule: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] - Substitute \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \): \[ \frac{dy}{dx} = e^x \cdot \frac{1}{x} + \ln x \cdot e^x \] 4. **Simplify the Expression**: - Combine the terms: \[ \frac{dy}{dx} = \frac{e^x}{x} + e^x \ln x \] - Factor out \( e^x \): \[ \frac{dy}{dx} = e^x \left( \frac{1}{x} + \ln x \right) \] 5. **Final Result**: - The derivative of \( y = e^x \ln x \) is: \[ \frac{dy}{dx} = e^x \left( \frac{1}{x} + \ln x \right) \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & CALCULUS

    MOTION|Exercise EXERCISE -2 (LEVEL - I) OBJECTIVE PROBLEMS|47 Videos
  • VECTOR & CALCULUS

    MOTION|Exercise EXERCISE -2 (LEVEL - II) MULTIPLE CORRECT|13 Videos
  • VECTOR & CALCULUS

    MOTION|Exercise PHYSICAL EXAMPLE|11 Videos
  • VECTOR

    MOTION|Exercise Exercise - 3|18 Videos
  • WAVE MOTION

    MOTION|Exercise Exercise - 3 Section - B (Previous Years Problems)|7 Videos

Similar Questions

Explore conceptually related problems

The indefinite integral inte^(e^(x))((xe^(x).lnx+1)/(x))dx simplifies to (where, c is the constant of integration)

If A={(x,y):y=e^(x),x in R} and B={(x,y):y=e^(-2x),x in R}, then

Let A={(x,y):y=e^(x) , x in R } B={(x,y),Y=e^(-x) ,x in R} then

Let A={(x, y)|y=e^(x), x in R} and B={(x, y)|=e^(-x), x in R} . Then

f(x)=x^(2)+lnx

Find fog and gof if: f(x)=e^(x),g(x)=lnx

Let A = int_(1)^(e^(2))(lnx)/(sqrt(x))dx , then

What is the derivative of the function f(x)=e^(tanx)+ln(secx)-e^(lnx)" at "x=(pi)/(4)?