Home
Class 12
PHYSICS
y=(x-1) (x^(2)+x+1)...

`y=(x-1) (x^(2)+x+1)`

A

`(dy)/(dx)=2x^(2)`

B

`(dy)/(dx)=3x^(2)`

C

`(dy)/(dx)=5x^(2)`

D

`(dy)/(dx)=3x`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = (x - 1)(x^2 + x + 1) \), we can use the product rule of differentiation. The product rule states that if you have two functions \( f(x) \) and \( g(x) \), then the derivative of their product is given by: \[ \frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x) \] ### Step-by-Step Solution: 1. **Identify the functions**: Let \( f(x) = x - 1 \) and \( g(x) = x^2 + x + 1 \). 2. **Find the derivatives**: - The derivative of \( f(x) \): \[ f'(x) = \frac{d}{dx}(x - 1) = 1 \] - The derivative of \( g(x) \): \[ g'(x) = \frac{d}{dx}(x^2 + x + 1) = 2x + 1 \] 3. **Apply the product rule**: Using the product rule: \[ y' = f'(x)g(x) + f(x)g'(x) \] Substitute \( f(x) \), \( g(x) \), \( f'(x) \), and \( g'(x) \): \[ y' = (1)(x^2 + x + 1) + (x - 1)(2x + 1) \] 4. **Simplify the expression**: - First part: \[ y' = x^2 + x + 1 \] - Second part: \[ (x - 1)(2x + 1) = 2x^2 + x - 2x - 1 = 2x^2 - x - 1 \] - Combine both parts: \[ y' = (x^2 + x + 1) + (2x^2 - x - 1) \] \[ y' = x^2 + 2x^2 + x - x + 1 - 1 \] \[ y' = 3x^2 \] 5. **Final result**: The derivative of the function \( y \) is: \[ y' = 3x^2 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & CALCULUS

    MOTION|Exercise EXERCISE -2 (LEVEL - I) OBJECTIVE PROBLEMS|47 Videos
  • VECTOR & CALCULUS

    MOTION|Exercise EXERCISE -2 (LEVEL - II) MULTIPLE CORRECT|13 Videos
  • VECTOR & CALCULUS

    MOTION|Exercise PHYSICAL EXAMPLE|11 Videos
  • VECTOR

    MOTION|Exercise Exercise - 3|18 Videos
  • WAVE MOTION

    MOTION|Exercise Exercise - 3 Section - B (Previous Years Problems)|7 Videos

Similar Questions

Explore conceptually related problems

Find the co-ordinates of the point on curve y=(x^(2)-1)/(x^(2)+1),(x>0) where the gradient of the tangent to the curve is maximum.

Draw the graph of y=f(x)=(x+1)/(x^(2)+1)

If graph of y=(x-1)(x-2) is then draw the graph of the following (i) y=|(x-1)(x-2)| (ii) |y|=(x-1)(x-2) (iii) y=(|x|-1)(|x|-2) (iv) |(|x|-1)(|x|-2)| (v) |y|=|(|x|-1)(|x|-2)|

Find the maximum and minimum of y=(x^(2)+1)/(x^(2)+x+1)

Find (dx)/(dy), when y=((x+1)(2x^(2)-1))/(x^(2)+1)

y=(x-1)(2-x), ….. x= 1, x = 2

If y = 1 +(1)/(x) +(1)/(x^(2)) + (1)/(x^(3)) + ……..+oo with |x| gt 1 then (dy)/(dx) is .

Draw the graph of y=((x-1)(6x-1))/(2x-1) .

Find the products: 2x+3y)(2x-3y)(x-1)(x+1)(x^(2)+1)(x^(4)+1)