Home
Class 11
MATHS
The value of lim(x->0)([(100 x)/(sinx)]+...

The value of `lim_(x->0)([(100 x)/(sinx)]+[(99sinx)/x])` (where [.] represents the greatest integral function) is (a)`199` (b) ` 198` (c)` 0 ` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xto0) ([(100x)/(sinx)]+[(99sinx)/(x)]) (where [.] represents the greatest integral function) is

The value of lim_(x rarr0)([(100x)/(sin x)]+[(99sin x)/(x)]) , [.] denotes the greatest integer function,is

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

The value of lim_(x to 0) (sinx)/(3) [5/x] is equal to [where [.] represent the greatest integer function)

The value of lim_(xrarr0)[(x)/(sinx)] , where [.] represents the greatest integer function,is

lim_(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greatest integer function).

lim_(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greatest integer function).