Home
Class 12
MATHS
If A=[[1,0,0] , [0,1,0] , [a,b,-1]] then...

If `A=[[1,0,0] , [0,1,0] , [a,b,-1]]` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[1,0,0],[0,1,0],[a,b,-1]] and A=A^(-1) then a+b=?

If A=[[1,0,0],[0,1,0],[a,b,-1]] , find A^2

If A=[[1,0,0],[0,1,0],[a,b,-1]] , find A^2

If A=[[1, 0, 0], [a, 1, 0], [b, c, 1]] , then A^(-1)=

If A=[[1, 2, x], [0 ,1 ,0],[ 0, 0, 1]] and B=[[1,-2,y],[0, 1, 0 ],[0, 0, 1]] and A B=I_3 , then x+y equals (a) 0 (b) -1 (c) 2 (d) none of these

If A=[(1,0,0),(0,1,0),(1,b,-10] then A^2 is equal is (A) unit matrix (B) null matrix (C) A (D) -A

Given A=[[1,0,0],[0,-1,0],[0,0,-1]] and B=[[2,x,x],[x,4,5],[x,6,7]] : determine the value of x , if there be any , for which the property AB=BA may hold.

If A= [[0,1],[0,0]] ,B= [[1,0],[0,0]] , then BA=

If A = {: [ ( 1,0,0) , ( 0,1,0) , ( a,b,-1)]:} show that A^(2) is a unit matrix .

If A=[[1,0],[0,1]],B=[[1,0],[0,-1]] and C=[[0,1],[1,0]] then show that A^(2)=B^(2)=C^(2)