Home
Class 12
MATHS
If x+y+z=0 prove that |a x b y c z c y a...

If `x+y+z=0` prove that `|a x b y c z c y a z b x b z c x a y|=x y z|a b cc a bb c a|`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x+y+z=0 prove that |[a x, b y, c z],[ c y, a z ,b x],[ b z ,c x ,a y]|=x y z|[a, b, c],[c ,a ,b],[b ,c ,a]|

If x+y+z=0 prove that |[a x, b y, c z],[ c y, a z ,b x],[ b z ,c x ,a y]|=x y z|[a, b, c],[c ,a ,b],[b ,c ,a]|

Prove that |a x-b y-c z a y+b x c x+a z a y+b x b y-c z-a x b z+c y c x+a z b z+c y c z-a x-b y|=(x^2+y^2+z^2)(a^2+b^2+c^2)(a x+b y+c z)dot

Prove that |a x-b y-c z a y+b x c x+a z a y+b x b y-c z-a x b z+c y c x+a z b z+c y c z-a x-b y|=(x^2+y^2+z^2)(a^2+b^2+c^2)(a x+b y+c z)dot

Prove that |[a x-b y-c z, a y+b x, c x+a z], [a y+b x, b y-c z-a x, b z+c y],[c x+a z, b z+c y, c z-a x-b y]|=(x^2+y^2+z^2)(a^2+b^2+c^2)(a x+b y+c z)dot

Prove that |[a x-b y-c z, a y+b x, c x+a z], [a y+b x, b y-c z-a x, b z+c y],[c x+a z, b z+c y, c z-a x-b y]|=(x^2+y^2+z^2)(a^2+b^2+c^2)(a x+b y+c z)dot

The product of all values of t , for which the system of equations (a-t)x+b y+c z=0,b x+(c-t)y+a z=0,c x+a y+(b-t)z=0 has non-trivial solution, is |a-c-b-c b-a-b-a c| (b) |a b c b c a c a b| |a c bb a cc b a| (d) |a a+bb+c bb+cc+a cc+a a+b|

The product of all values of t , for which the system of equations (a-t)x+b y+c z=0,b x+(c-t)y+a z=0,c x+a y+(b-t)z=0 has non-trivial solution, is |a-c-b-c b-a-b-a c| (b) |a b c b c a c a b| |a c bb a cc b a| (d) |a a+bb+c bb+cc+a cc+a a+b|

The minimum value of P=b c x+c a y+a b z , when x y z=a b c , is

If a + b + c != 0 then the number solutions (x,y,z) to the system (b + c)(y + z) - ax = b - c (c + a)(z + x) - by = c - a (a + b) (x + y) - cz = a - b is