Home
Class 12
MATHS
If x^5=1(x!=1), then x/(1+x^2)+x^2/(1+x^...

If `x^5=1(x!=1)`, then `x/(1+x^2)+x^2/(1+x^4)+x^3/(1+x)+x^4/(1+x^3)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If x+1/x=3, calculate x^2+1/(x^2),\ x^3+1/(x^3) and x^4+1/(x^4)

If x^4+1/(x^4)=194 , find x^3+1/(x^3),x^2+1/(x^2) and x+1/x

If x^4+1/(x^4)=194 , find x^3+1/(x^3),x^2+1/(x^2) and x+1/x

If x^4+1/(x^4)=194 ,\ find x^3+1/(x^3),\ x^2+1/(x^2) and x+1/x

The coefficient of x^(10) in the expansion of (1+x)^(2)(1+x^(2))^(3)(1+x^(3))^(4) is equal to

If x + ( 1)/( x) = 4 , then x^(3) + ( 1)/( x^(3) is equal to :

If x-(1)/(x)=1 , then the value of (x^(4)-(1)/(x^(2)))/(3x^(2)+5x-3) is

If x^(2)+3x+1=0 then find x^(3)+(1)/(x^(3)),x^(4)+(1)/(x^(4)),x^(2)-(1)/(x^(2)),x^(2)+(1)/(x^(2))