Home
Class 12
MATHS
y=tan^(-1)[sqrt((a-b)/(a+b))times tan(x)...

y=tan^(-1)[sqrt((a-b)/(a+b))times tan(x)/(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) when : y= tan^(-1)[sqrt((a-b)/(a+b))"tan"(x)/(2)]

"If "y=(2)/(sqrt(a^(2)-b^(2))){tan^(-1)(sqrt((a-b)/(a+b))tan""(x)/(2))}," then show that "(d^(2)y)/(dx^(2))=(b sin x)/((a+b cos x)^(2)).

(d)/(dx ) { Tan ^(-1) ( sqrt(|(a -b)/(a +b)|)tan ""(x)/(2))}=

Prove that : "cos"^(-1) ((b+a "cos"x)/(a+b "cos"x)) =2"tan"^(-1)(sqrt((a-b)/(a+b)) "tan" x/2)

2 tan ^(-1) (sqrt((a-b)/(a+b))tan""(x)/(2))=cos^(-1)""(acos x+b)/(a+b cos x)

y = tan ^ (- 1) [sqrt ((ab) / (a + b)) (tan x) / (2)]

A: int (1)/(3+2 cos x)dx=(2)/(sqrt(5))"Tan"^(-1)((1)/(sqrt(5))"tan" (x)/(2))+c R: If a gt b then int (dx)/(a+b cosx)=(2)/(sqrt(a^(2)-b^(2)))Tan^(-1)[(sqrt(a-b))/(a+b)"tan"(x)/(2)]+c

The value tan^(-1)[sqrt((a-b)/(a+b))"tan"(theta)/2] is equal to

If y=2/sqrt(a^2-b^2)tan^-1[sqrt((a-b)/(a+b))tan(x/2)] then (d_2y)/(dx^2)|(x=pi/2)|