Home
Class 11
MATHS
Prove that: sin^2 6x-sin^2 4x=sin2xsin10...

Prove that: `sin^2 6x-sin^2 4x=sin2xsin10 x`

Text Solution

AI Generated Solution

To prove that \( \sin^2 6x - \sin^2 4x = \sin 2x \sin 10x \), we will start with the left-hand side and simplify it step by step. ### Step 1: Use the difference of squares formula We can apply the difference of squares formula, which states that \( a^2 - b^2 = (a + b)(a - b) \). \[ \sin^2 6x - \sin^2 4x = (\sin 6x + \sin 4x)(\sin 6x - \sin 4x) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.1|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.4|9 Videos
  • STRAIGHT LINES

    NCERT|Exercise EXERCISE 10.5|2 Videos

Similar Questions

Explore conceptually related problems

sin^(2)6x-sin^(2)4x=sin2xsin10x

Prove that: sin^(2)6x-sin^(2)4x=s in2xs in10x

sin ^ (2) 6x-sin ^ (2) 4x = sin2x sin10x

Prove that: (i) "sin"^(2)6x-"sin"^(2)4x="sin" 2x sin 10x (ii) cos^(2)2x-cos^(2)6x="sin" 4x sin 8x .

Prove that: cos^(2)2x-cos^(2)6x=sin4x sin8x

Prove that: sin2x+2sin4x+sin6x=4cos^(2)x sin4x

Prove that sin x + sin 3x + sin 5x + sin 7x=4 sin 4x cos 2x cos x.

Prove that: (i) sin 3x+"sin" 2x-"sin" x = 4 sin x cos((x)/(2))cos((3x)/(2)) (ii) ("sin" 3x+"sin" x)"sin" x+(cos 3x-cos x)cos x=0.

Prove that: ,,(sin x-sin3x)/(sin^(2)x-cos^(2)x)=2sin x

Prove that sin^(4)x-cos^(4)x=sin^(2)x-cos^(2)x