Home
Class 12
MATHS
The value of 3(cos theta-sin theta)^(4)+...

The value of `3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta` is where `theta in ((pi)/(4),(pi)/(2))` (a) `13-4cos^(4) theta` (b) `13-4cos^(6) theta` (c) `13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta` (d) `13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin theta + sin^(2) theta =1 then cos^(4) theta + cos^(8) theta + 2 cos^(6) theta =

(((cos theta+sin theta)^(4)-(cos theta-sin theta)^(4))/(sin theta cos theta))=?

sin^(4) theta + cos ^(4) theta + 2sin^(2) theta cos ^(2) theta has value 1.

Prove that: 3(sin theta-cos theta)^(4)+6(sin theta+cos theta)^(2)+4(sin^(6)theta+cos^(6)theta)-13=0

2(sin^(6) theta + cos^(6)theta) - 3(sin^(4)theta + cos^(4)theta)+ 1 = 0

If sin theta+sin ^(2) theta+sin ^(3) theta=1 then cos ^(6) theta-4 cos ^(4) theta+8 cos ^(2) theta=