Home
Class 12
MATHS
If tan A, tan B are the roots of x^2-2x+...

If tan A, tan B are the roots of `x^2-2x+2=0` then `sin^2(A+B)=` (i) `4/5` (ii)`1/2` (iii)`3/5` (iv)`1/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan A ,tan B are the roots of x^2-bx+c=0 ,show that sin^2(A+B)=b^2/(b^2+(1-c)^2)

If in a !ABC , tan A/2 and tan B/2 are the roots of the equation 6x^(2)-5x+1=0 , then

If tan A backslash and backslash backslash tan B are the roots of x^(2)-2x-1=0, then sin^(2)(A+B) is (A)(1)/(sqrt(2))(B)(sqrt(3))/(2)(C)(1)/(2)(D)0

If in a triangle ABC , tan A/2 and tan B/2 are the roots of the equation 6x^(2)-5x+1=0 , then

Cot A Cot B = 2, Cos (A+B) = 3/5 => sinA.sin B = (i) 2/5 (ii) 1/5 (iii) 4/5 (iv) 3/5

Find the cube of : (i) 2 2/5 (ii) 3 1/4 (iii) 0. 3 (iv) 1. 5

If tan.(A)/(2)andtan.(B)/(2) are the roots of the quadratic equation 6x^(2)-5x+1=0 , then DeltaABC is

If tan.(A)/(2)andtan.(B)/(2) are the roots of the quadratic equation 6x^(2)-5x+1=0 , then DeltaABC is

The number of solutions of the equations 2x - 3y = 5, x+2y=7 is (i) 1 (ii)2 (iii)4 (iv) 0