Home
Class 12
MATHS
If g(x)=|[a^(-x), e^(xloge a), x^2] , [a...

If `g(x)=|[a^(-x), e^(xlog_e a), x^2] , [a^(-3x), e^(3xlog_e a), x^4] , [a^(-5x), e^(5xlog_e a), 1]|` then 1)g(x)+g(-x)=0 2)g(x)-g(-x)=0 3)g(x).g(-x)=0 4)None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x)=|[a^(-x),e^(x log_e a),x^2],[a^(-3x),e^(3x log_e a),x^4],[a^(-5x),e^(5x log_e a),1]| , then

If g(x)=|[a^(-x),e^(x log_e a),x^2],[a^(-3x),e^(3x log_e a),x^4],[a^(-5x),e^(5x log_e a),1]| , then

If g(x) =|(a^(-x),e^(xlog_(e)a),x^(2)),(a^(-3x),e^(3xlog_(e)a),x^(4)),(a^(-5x),e^(5xlog_(e)a),1)| , then a)g(x)+g(-x)=0 b)g(x)-g(x)=0 c) g(x)xxg(-x)=0 d)None of these

If f(x)=|(2^(-x),e^(xlog_(2)2),x^(2)),(2^(-3x),e^(3xlog_(e)2),x^(4)),(2^(-5x),e^(5xlog_(e)2),1)| , then a) f(x) + f(-x) = 0 b)f(x) - f(-x) =0 c)f(x) + f(-x)=2 d)None of these

" If " g(x) = |{:(a^(-x),,e^(x log _(e)a),,x^(2)),(a^(-3x),,e^(3x log_(e)a),,x^(4)),(a^(-5x),,e^(5x log _(e)a),,1):}| then

" If " g(x) = |{:(a^(-x),,e^(x log _(e)a),,x^(2)),(a^(-3x),,e^(3x log_(e)a),,x^(4)),(a^(-5x),,e^(5x log _(e)a),,1):}| then

" If " g(x) = |{:(a^(-x),,e^(x log _(e)a),,x^(2)),(a^(-3x),,e^(3x log_(e)a),,x^(4)),(a^(-5x),,e^(5x log _(e)a),,1):}| then

If g(x)=|a^(-x)e^(x log_e a)x^2a^(-3x)e^(3x log_e a)x^4a^(-5x)e^(5x log_e a)1| , then graphs of g(x) is symmetrical about the origin graph of g(x) is symmetrical about the y-axis ((d^4g(x))/(dx^4)|)_(x=0)=0 f(x)=g(x)xxlog((a-x)/(a+x)) is an odd function

If g(x)=|a^(-x)e^(x log_e a)x^2a^(-3x)e^(3x log_e a)x^4a^(-5x)e^(5x log_e a)1| , then graphs of g(x) is symmetrical about the origin graph of g(x) is symmetrical about the y-axis ((d^4g(x))/(dx^4)|)_(x=0)=0 f(x)=g(x)xxlog((a-x)/(a+x)) is an odd function

If x^(y)=a^(x) , prove that dy/dx=(xlog_(e)a-y)/(xlog_(e)x) .