Home
Class 12
MATHS
lim(x->0)(x e^x-log(1+x))/(x^2) equals...

`lim_(x->0)(x e^x-log(1+x))/(x^2)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 0)(xe^(x)-log(1+x))/(x^(2))=

(7) Find the value of lim_(x->0) ((e^(x)-1) log(1+x))/(x^(2))

lim_(x to 2)(log(x-1))/(x-2) is equal to

lim_(x->0) ((1+x)^(1/x)-e)/x is equal to

The value of lim_(xrarr0)""(log(1+2x))/(x) is equal to

The value of lim_(xto 0)(log(1+2x))/(x) is equal to

If f(x) = lim_(n->oo) tan^(-1) (4n^2(1-cos(x/n))) and g(x) = lim_(n->oo) n^2/2 ln cos(2x/n) then lim_(x->0) (e^(-2g(x)) -e^(f(x)))/(x^6) equals

The value of lim_(x to 0)(e^(x)-log(e+ex))/(x) is -

lim_(x rarr0)(log_(e)(1+x))/(x)

The value of lim_(xrarr 0) (e^x+log (1+x)-(1-x)^-2)/(x^2) is equal to