Home
Class 8
MATHS
8p^(3)+36p^(2)q+54pq^(2)+26d^(3)...

8p^(3)+36p^(2)q+54pq^(2)+26d^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Divide the given polynomial by the given monomial (4p^(3) - 8p^(2)q - 12pq^(2)) div (-4p)

Add : 6p^(2)q - 5pq^(2) -3pq, 8pq^(2)+2p^(2)q -2pq

Add : 6p^(2)q - 5pq^(2) -3pq, 8pq^(2)+2p^(2)q -2pq

In Q.No.7,HCF(a,b) is pq(b)p^(3)q^(3)(c)p^(3)q^(2) (d) p^(2)q^(2)

Subtract: 4pq - 5a^(2) - 3p^(2) "from" 5p^(2) + 3q^(2) - pq

Multiply : 5p^(2) + 25pq + 4q^(2) by 2p^(2) - 2pq + 3q^(2)

If log_(8)p=25backslash and log_(2)q=5, then a.p=q^(15) b.p^(2)=q^(3) c.p=q^(5) d.p^(3)=q

If two positive integers m and n are expressible in the form m=pq^(3) and n=p^(3)q^(2), where p,q are prime numbers, then HCF(m,n)=pq(b)pq^(2)(c)p^(3)q^(3)(d)p^(2)q^(3)