Home
Class 12
MATHS
" 8"(dy)/(dx)+(y)/(x)log y=(y)/(x^(2))(l...

" 8"(dy)/(dx)+(y)/(x)log y=(y)/(x^(2))(log y)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

solve (dy) / (dx) + (y) / (x) * log y = (y) / (x ^ (2)) (log y) ^ (2)

If x^(y)=y^(x) , prove that (dy)/(dx)=((y)/(x)-log y)/((x)/(y)-log x)

If x^(y) y^(x)=5 , then show that (dy)/(dx)= -(log y + (y)/(x))/(log x + (x)/(y))

If e^(y)=y^(x), prove that (dy)/(dx)=((log y)^(2))/(log y-1)

If y=a^(x^(x^(2)*oo)), prove that (dy)/(dx)=(y^(2)log y)/(x(1-y log x*log y))

If x ^( log y) = log x, then prove that (dy)/(dx) = (y)/(x) ((1- log x log y)/( (log x) ^(2)))

(dy)/(dx)=(y(x ln y-y))/(x(y ln x-x))

If x^(y)y^(x),=1, prove that (dy)/(dx),=-(y(y+x log y))/(x(y log x+x))

If x^(y).y^(x)=1, prove that (dy)/(dx)=-(y(y+x log y))/(x(y log x+x))