Home
Class 12
MATHS
[" For "0<x<(pi)/(2)," prove that "x>sin...

[" For "0sin x" and hence "cos(sin x)>],[sin(cos x)]

Promotional Banner

Similar Questions

Explore conceptually related problems

For 0ltxlt(pi)/(2) ,prove that x gt sin x and hence cos (sin x) gt sin (cosx)

For 0ltxlt(pi)/(2) ,prove that x gt sin x and hence cos (sin x) gt sin (cosx)

|[cos x,sin x],[sin x,cos x]|

y=(sin x+cos x)/(sin x-cos x)

Prove geometrically that cos(x + y) = cos x cos y - sinx sin y and hence prove cos((pi)/(2) + x) = - sin x .

(sin x+x cos x)/(x sin x-cos x)

(3) (cos x-sin x)/(cos x+sin x)

The number of distinct real roots of the equation, |(cos x, sin x , sin x ),(sin x , cos x , sin x),(sinx , sin x , cos x )|=0 in the interval [-pi/4,pi/4] is :

if a=(1+sin x)/(1-cos x+sin x) then (1+cos x+sin x)/(2sin x) is