Home
Class 11
MATHS
4(sin^(-1)(1)/(sqrt(10))+cos^(-1)(2)/(sq...

4(sin^(-1)(1)/(sqrt(10))+cos^(-1)(2)/(sqrt(5)))=pi

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that sin^(-1)(1/sqrt(10))+cos^(-1)(2/sqrt5)=pi/4 .

cos ^(-1)"" (1)/(sqrt(5))+ cos ^(-1) ""(2)/(sqrt(5))=(pi)/(2)

tan^(-1)(2)=sin^(-1)(2/(sqrt(5)))=cos^(-1)(1/(sqrt(5)))

Prove that: i) sin^(-1)(1/sqrt(5))+sin^(-1)(2/sqrt(5))=pi/2

sin^(-1)((1)/(sqrt(5)))+sin^(-1)((1)/(sqrt(10)))=(pi)/(4)

If alpha=sin(sin^(-1)( 1/sqrt3)/(3)),beta=cos(cos^(-1)((1)/(sqrt(5)))-sin^(-1)((2)/(sqrt(5)))) then (beta^(2))/((3 alpha-4a^(3))^(2)) is

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))