Home
Class 9
MATHS
(2^(n)+2^(n-1))/(2^(n+1)-2^(n))=(3)/(2)...

(2^(n)+2^(n-1))/(2^(n+1)-2^(n))=(3)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

(2^(n)+2^(n-1))/(2^(n+1)-2n)=(3)/(2)

[ If 2 is the sum of infinity of a G.P.,whose first clement is 1 ,then the sum of the first n terms is [ 1) (2^(n)-1)/(2^(n)), 2) (2^(n)-1)/(2^(n-1)), 3) (2^(n-1)-2)/(2), 4) (2^(n-1)-1)/(2^(n))]]

If A=([x,x],[x,x]) then A^(n)(n in N)= 1) ([2^nx^n,2^nx^n],[2^nx^n,2^nx^n]) 2) ([2^(n-1) x^n,2^(n-1) x^n],[2^(n-1) x^n,2^(n-1) x^n]) 3) I 4) ([2^(n) x^(n-1),2^(n) x^(n-1)],[2^(n) x^(n-1),2^(n) x^(n-1)])

lim_(n rarr oo)(3^(n+1)+2^(n+2))/(3^(n-1)+2^(n-2)) =

1^(2)C_(1)-2^(2)C_(2)+3^(2)C_(3)-+(-1)^(n-1)n^(2)C_(n)=(1)(n^(2)*2^(n+1))/(n+1)(3)(2^(n+1))/(n-1)

lim_(n rarr oo) [(n+1)/(n^(2)+1^(2) )+(n+2)/(n^(2)+2^(2))+(n^+3)/(n^(2)+3^(2))+.....1/n] =

A) |lim_(n rarr oo)((n^((1)/(2)))/(n^((3)/(2)))+(n^((1)/(2)))/((n+3)^((3)/(2)))+....+(n^((1)/(2)))/( n+3(n-1) ^((3)/(2))))=

(1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+.....+(n^(2))/ ((2n-1)(2n+1))=((n)(n+1))/((2(2n+1)))

lim_(n rarr oo) [(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+(n+3)/(n^(2)+3^(2))+.....+(1)/(n)]