Home
Class 11
MATHS
log(10)(2^(x)+x-41)=x(1-log(10)5)...

log_(10)(2^(x)+x-41)=x(1-log_(10)5)

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(10)[(1)/(2^(x)+x-1)]=x[log_(10)5-1], then x=4 (b) 3(c)2(d)1

If log_(10) 2, log_(10)(2^(x) -1) , log_(10)(2^(x)+3) are in AP, then what is x equal to?

Find the value of x given that 2log_(10)(2^(x)-1)=log_(10)2+log_(10)(2^(x)+3)

if x+log_(10)(1+2^(x))=x log_(10)5+log_(10)6 then x

Solve for x:x+(log)_(10)(1+2^(x))=x log_(10)5+log_(10)6

If x+log_(10)(1+2^(x))=xlog_(10)5+log_(10)6 then x is equal to

If x+log_(10)(1+2^(x))=xlog_(10)5+log_(10)6 then the value of x is

(x-2)^(log_(10)^(2)(x-2)+log_(10)(x-2)^(5)-12)=10^(2log_(10)(x-2))