Home
Class 12
MATHS
Evaluate int0^1(tan^(-1)x)/(1+x^2)dx...

Evaluate `int_0^1(tan^(-1)x)/(1+x^2)dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_0^1 \frac{\tan^{-1} x}{1+x^2} \, dx \), we will use substitution. ### Step 1: Substitution Let \( t = \tan^{-1} x \). Then, we differentiate both sides: \[ dt = \frac{1}{1+x^2} \, dx \quad \Rightarrow \quad dx = (1+x^2) \, dt \] We also need to change the limits of integration. When \( x = 0 \), \( t = \tan^{-1}(0) = 0 \). When \( x = 1 \), \( t = \tan^{-1}(1) = \frac{\pi}{4} \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_(0)^(1)x(tan^(-1)x)^(2)dx

Evaluate : int (tan^(-1)x)^(4)/(1+x^2) dx

Evaluate: int(tan^(-1)x)/(1+x^(2))dx

Evaluate : int(tan^(-1)x)/((1+x)^(2))dx .

2int_(0)^(1)(tan^(-1)x)/(x)dx=

What is the value of int_0^1 (tan^-1 x )/(1+x^2) dx dx

Evaluate: int(sin(tan^(-1)x))/(1+x^(2))dx

Evaluate int (x+tan^(-1)x)dx

Evaluate: int tan^(-1)((2x)/(1-x^(2)))dx

Evaluate inte^(a tan^-1x)/(1+x^2)dx