Home
Class 11
MATHS
If (logbeta alpha)^2+(logalpha beta)^2=7...

If `(log_beta alpha)^2+(log_alpha beta)^2=79` then value of `(log_beta alpha)+(log_alpha beta)` can be

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation (log_(2)x)^(2)+4(log_(2)x)-1=0 then the value of log_(beta)alpha+log_(alpha)beta equal to

If alpha^(2)=5 alpha-3 beta^(2)=5 beta-3 then the value of (alpha)/(beta)+(beta)/(alpha) is

If log_(12)18=alpha and log_(24)54=beta then the value of alpha beta+alpha-beta

Given that (log)_p x=alpha\ a n d(log)_q x=beta,\ then value of equals- a. (alphabeta)/(beta-alpha) b. (beta-alpha)/(alphabeta) c. (alpha-beta)/(alphabeta) d. (alphabeta)/(alpha-beta)

If alpha+ beta=-7 and alpha beta=10 then find the value of alpha-beta=__ .

If alpha1=beta but alpha^(2)=2 alpha-3;beta^(2)=2 beta-3 then the equation whose roots are (alpha)/(beta) and (beta)/(alpha) is

If alpha and beta are roots of equation (log_(3)x)^(2)-4(log_(3)x)+2=0 then The value of log_(alpha)beta+log_(beta)alpha is

If alpha and beta are roots of equation (log_(3)x)^(2)-4(log_(3)x)+2=0 then The value of log_(alpha)beta+log_(beta)alpha is

If the solution of the equation log_(x)(125x)*log_(25)^(2)x=1are alpha and beta(alpha

Given that log_(p)x=alpha and log_(q)x=beta, then value of log_((p)/(q))x equals