Home
Class 11
MATHS
If sin^ 4 x/2+cos^4 x/3 =1/5 then...

If `sin^ 4 x/2+cos^4 x/3 =1/5` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If (sin^4x)/2+(cos^4x)/3=1/5 then (a) tan^2x=2/3 (b) (sin^8x)/8+(cos^8x)/(27)=1/(125) (c) tan^2x=1/3 (d) (sin^8x)/8+(cos^8x)/(27)=2/(125)

If sin^4x/2+cos^4x/3=1/5 then

If sin^4x/2+cos^4x/3=1/5 then

If (sin^4x)/2+(cos^4x)/3=1/5t h e n (a) tan^2x=2/3 (b) (sin^8x)/8+(cos^8x)/(27)=1/(125) (c) tan^2x=1/3 (d) (sin^8x)/8+(cos^8x)/(27)=2/(125)

If (sin^4x)/2+(cos^4x)/3=1/5t h e n tan^2x=2/3 (b) (sin^8x)/8+(cos^8x)/(27)=1/(125) tan^2x=1/3 (d) (sin^8x)/8+(cos^8x)/(27)=2/(125)

If (sin^4x)/2+(cos^4x)/3=1/5t h e n tan^2x=2/3 (b) (sin^8x)/8+(cos^8x)/(27)=1/(125) tan^2x=1/3 (d) (sin^8x)/8+(cos^8x)/(27)=2/(125)

If 3 sin x+ 4 cos x =5 then 4 sin x -3 cos x is equal to

If sin x+sin^(2)x+sin^(3)x=1 then cos^(6)x-4cos^(4)x+8 cos^(2)x=

if 3sin x+4cos x=5, then 4sin x-3cos x

If (cos ^ (4) x) / (cos ^ (2) y) + (sin ^ (4) x) / (sin ^ (2) y) = 1 then prove that (cos ^ (4) y) / (cos ^ (2) x) + (sin ^ (4) y) / (sin ^ (2) x) = 1