Home
Class 12
MATHS
If y=e^(acos^(-1)x), -1<=x<=1 then show ...

If `y=e^(acos^(-1)x), -1<=x<=1` then show that `(1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)-a^2y=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = e^(acos^-1x), -1lexle1 , show that (1-x^2)(d^2y)/dx^2 - x(dy/dx) - a^2y = 0

If y=e^(acos^(-1)3x) , prove that (1-9x^(2))(d^(2)y)/(dx^(2))-9x(dy)/(dx)-9a^(2)y=0 .

If y=e^acos^((-1)x) , then prove that (1-x^2)y_2-x y_1-a^2y=0 .

If y=e^(acos^-1x)(-1lexle1) , show that , (1-x^2)(d^2y)/(dx^2)-xdy/dx-a^2y=0

If y=e^(acos^-1x) , then show that (1-x^2)y_2-xy_1-a^2y=0

if y=e^(a cos^-1x),-1lexle1 , show that dy/dx= (-ae^(acos^-1x))/(sqrt(1-x^2))

If y=tan^(-1)((2)/(e^(-x)-e^(x)))" then "(1+e^(2x))y_(1)=

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

Form the differential equation having y=(sin^(-1)x)^2+Acos^(-1)x+B ,w h e r eAa n dB are arbitrary constants, as its general solution.