Home
Class 11
MATHS
(x-1)/(log(8)(9-3x)-3)<=1...

(x-1)/(log_(8)(9-3x)-3)<=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve (x-1)/(log_(3)(9-3^(x))- 3) le 1 .

Solve: (x-1)/((log)_(3)(9-3^(x))-3)<=1

log_(x)(log_(9)(3^(x)-9))<1

The expression: (((x^(2)+3x+2)/(x+2))+3x-(x(x^(3)+1))/((x+1)(x^(2)+1))-log_(2)8)/((x-1)(log_(2)3)(log_(3)4)(log_(4)5)(log_(5)2)) reduces to

If log_(10)(x-1)^3-3log_(10)(x-3)=log_(10)8,then log_(x)625 has the value equal to :

If log_(10)(x-1)^3-3log_(10)(x-3)=log_(10)8,then log_(x)625 has the value equal to :

(1)/(log_(3)(x+1))<(1)/(2log_(9)sqrt(x^(2)+6x+9))

Find the value of x satisfying the equation,sqrt((log_(3)(3x)^((1)/(3))+log_(x)(3x)^((1)/(3)))log_(3)(x^(3)))+sqrt((log_(3)((x)/(3))^((1)/(3))+log_(x)((3)/(x))^((1)/(3)))log_(3)(x^(3)))=2

The sum of all the solution(s) of the equation (log_(9x)3)(log_((x)/(9))3)=log_((x)/(81))3 is equal to

If log_(10)(x-1)^(3)-3log_(10)8(x-3)=log_(10)8 then log_(x)625 has the value of equal to: 5(b)4 (c) 3 (d) 2