Home
Class 14
MATHS
tan^(-1)(sqrt(x(x+1)))+sin^(-1)(sqrt(x^(...

tan^(-1)(sqrt(x(x+1)))+sin^(-1)(sqrt(x^(2)+x+1))=pi/2

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of real roots of the equation tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(4) is :

Solve: tan^(-1)sqrt(x(x+1) + sin^(-1)sqrt(1+x+x^2) = pi/2

solve : tan^(-1) sqrt(x(x+1))+sin ^(-1) (sqrt(1+x+x^(2)))=(pi)/(2)

Solve the equation: tan^(-1)sqrt(x^(2)+x)+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2)

Solve the equation: tan^(-1)sqrt(x^2+x)+sin^(-1)sqrt(x^2+x+1)=pi/2

The number of solution of the equation tan^-1 sqrt(x(x+1)) + sin^-1sqrt(x^2 + x + 1) = pi/2

Solve the equation tan^(-1)sqrt(x^(2)+x+sin^(-1))sqrt(x^(2)+x+1)=(pi)/(2) .

tan^(-1)sqrt((1-x)/(1+x))+sin^(-1)2x sqrt(1-x^(2))=(5 pi)/(12) if x=

Solve the following equations. tan^-1 (sqrt(x^2 + x) + sin^-1 sqrt(x^2 + x + 1) = pi/2

Number of values of x satisfying simultaneously sin^(-1) x = 2 tan^(-1) x " and " tan^(-1) sqrt(x(x-1)) + cosec^(-1) sqrt(1 + x - x^(2)) = pi/2 , is