Home
Class 12
MATHS
sin(cot^(-1)x)=(1)/(sqrt(1+x^(2)))...

sin(cot^(-1)x)=(1)/(sqrt(1+x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: cos{tan^(-1){sin(cot^(-1)x)}}=sqrt((1+x^(2))/(2+x^(2)))

Prove that cos[tan^(-1). {sin (cot^(-1)x)}]=sqrt((1+x^(2))/(2+x^(2))) .

Assertion: sin(cot^(-1)(1/2))=tan(cos^(-1)x) then the value of x=(sqrt(5))/3 Reason R: cos(tan^(-1)(sin(cot^(-1)x)))=sqrt(((1+x^(2))/(2+x^(2))))

The solution set of equation sin^(-1)sqrt(1-x^(2))+cos^(-1)x=cot^(-1)((sqrt(1-x^(2)))/(x))-sin^(-1)

int(tan(cos^(-1)x)+cot(sin^(-1)x))/(sqrt(1-x^(2)))dx=

Prove that: sin[cot^(-1){cos(tan^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))cos[tan^(^^)(-1){sin(cot^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))

Prove the following: "cos"{tan^(-1){sin(cot^(-1)x)}}= sqrt((1+x^2)/(2+x^2))

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

Prove that cos[Tan^(-1){sin(Cot^(-1)x)}] = sqrt((x^(2)+1)/(x^(2)+2))