Home
Class 12
MATHS
If A=[[costheta,isintheta],[isintheta,co...

If `A=[[costheta,isintheta],[isintheta,costheta]],` then prove by principal of mathematical induction that `A^n=[[cosntheta, i sinn theta],[isin n theta, cos n theta]]` for all n`in` `NN`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[costheta,isintheta],[isintheta,costheta]], then prove by principal of mathematical induction that A^n=[[cosntheta, i sinn theta],[isin n theta, cos n theta]] for all nin NN.

If A=[cos theta i sin theta i sin theta cos theta], then prove by principle of mathematical induction that A^(n)=[cos n theta i sin n theta i sin n theta cos n theta] for all n in N.

If A=[costhetaisinthetaisinthetacostheta] , then prove by principle of mathematical induction that A^n=[cosn\ thetaisinn\ thetaisinn\ thetacosn\ theta] for all n in N .

If A={:[(cos theta,isintheta),(i sintheta,costheta)]:}, then prove by principle of mathematical induction that A^(n)={:[(cosntheta,isintheta),(isintheta,cosntheta)]:} for all n in N.

If A= [[Cos theta, is in theta],[is in theta cos theta]] , then prove by principle of mathematics induction that: A^n= [[Cos theta, is in theta],[is in theta cos theta]], n in N.

If A=[[cos theta, sin theta],[ -sin theta, cos theta]] , then prove that A^n=[[cos ntheta, sinn theta],[ -sin n theta, cos n theta]] , n in N .

If A = [(cos theta, sin theta),(-sin theta, cos theta)] then show that for all the positive integers n, A^(n) = [(cos n theta,sin n theta),(-sin n theta,cos n theta)] .

Find (costheta+isintheta)^n

If A = [[costheta,sintheta],[-sintheta,costheta]] then prove that A^n = [[cosntheta,sinntheta],[-sinntheta,cosntheta]], n in N

If A=[[cos theta,sin theta-sin theta,cos theta]] then prove that A^(n)=[[cos n theta,sin n theta-sin n theta,cos n theta]],n in N