Home
Class 12
MATHS
f(x)=1/(sqrt(| [ |x|-1] |-5)), [.] is t...

`f(x)=1/(sqrt(| [ |x|-1] |-5)),` [.] is the greatest integer functio.

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=(1)/(sqrt(|||x|-1]|-5)),[.] is the greatest integer functio.

Find the domain of definition of the following functions : (i) f(x) = log_(10) sin (x-3) + sqrt(16 - x^(2)) (ii) f(x) = sqrt((4- |x|)/(7-|x|)) (iii) f(x) = (1)/(sqrt([|x|-1]|-5)) where [x] denotes the greatest integer function.

The domain of definition of the function f(x)=(1)/(sqrt(x-[x])), where [.] denotes the greatest integer function,is:

Let f(x) = (1)/(sqrt(|x-1|-[x])) where[.] denotes the greatest integer funciton them the domain of f(x) is

Let f(x) = (1)/(sqrt(|x-1|-[x])) where[.] denotes the greatest integer funciton them the domain of f(x) is

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

f(x)= [x] + sqrt(x -[x]) , where [.] is a greatest integer function then …….. (a) f(x) is continuous in R+ (b) f(x) is continuous in R (C) f(x) is continuous in R - 1 (d) None of these

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.