Home
Class 12
MATHS
If sinA+sinB+sinC=cosA+cosB+cosC=0, then...

If `sinA+sinB+sinC=cosA+cosB+cosC=0,` then (A)`cos(A-B)=-1/2` (B) `sin^2A+sin^2 B+sin^2 C=0`(C) `sin^2A+sin^2 B+sin^2 C=3/2` (D) `cos^2A+cos^2B+cos^2C=3/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos(A+B+C)=cos A cos B cos C , then (8sin(B+C)sin(C+A)sin(A+B))/(sin2A sin 2B sin 2C)=

cos(A+B)*cos(A-B)= (a) sin^2A-cos^2B (b) cos^2A-sin^2B (c) sin^2A-sin^2B (d) cos^2A-cos^2B

If A + B + C =180^@ , prove that : sin^2 A+ sin^2 B+sin^2 C=2 (1+cos A cos B cos C) .

If A+B+C=180^0 , prove that : sin^2 A + sin^2 B + sin^2 C =2 (1+cosA cosB cosC)

If A+B+C=180^0 , prove that : sin^2 A + sin^2 B + sin^2 C =2 (1+cosA cosB cosC)

If A+B+C=180^(@)C then (sin 2A+sin 2B+sin 2C)/(cos A +cos B +cos C-1)=

In a /_ABC,sin^(4)A+sin^(4)B+sin^(4)C=(3)/(2)+2cos A cos B cos C+(1)/(2)cos2A cos2B cos2C

If A+B+C=90^(@) then (cos 2A+cos 2B+cos 2C-1)/(sin A sin B sin C)=

If A + B + C = 180^(@) , prove that sin^(2)A + sin^(2)B + sin^(2) C = 2 + 2 cos A cos B cos C