Home
Class 12
MATHS
(dy)/(dx)=(x^(2))/(y^(2))sqrt((1-y^(6))/...

(dy)/(dx)=(x^(2))/(y^(2))sqrt((1-y^(6))/(1-x^(6)))*(11*1770)/(11-y^(6))=a^(3)(x^(3)-y^(3))," prove that: "

Promotional Banner

Similar Questions

Explore conceptually related problems

(6)/(x+y)=(7)/(x-y)+3(1)/(2(x+y))=(1)/(3(x-y))

x^(2)dx-y^(2)dy+xdx=dy-ydy-dx A) 2(x^(3)-y^(3))-3(x^(2)+y^(2))+6(x-y)=c B) 2(x^(3)-y^(3))+3(x^(2)-y^(2))+6(x+y)=c C) 2(x^(3)-y^(3))-3(x^(2)+y^(2))-6(x-y)=c D) 2(x^(3)-y^(3))+3(x^(2)+y^(2))+6(x-y)=c

If sqrt(1-x^6)+sqrt(1-y^6)=a^3(x^3-y^3) , prove that : dy/dx = x^2/y^2sqrt((1-y^6)/(1-x^6)) .

If sqrt(1-x^(6))+sqrt(1-y^(6))=a(x^(3)-y^(3)), then prove that (dy)/(dx)=(x^(2))/(y^(2))sqrt((1-y^(6))/(1-x^(6)))

Solve : x(dy)/(dx)+y=x^(3)y^(6)

If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3) , prove that (dy)/(dx)=(x^2)/(y^2)sqrt((1-y^6)/(1-x^6) where (-1 < x <,1 and -1 < y < 1.)