Home
Class 10
MATHS
(" iv ")px^(2)+(2q-p^(2))x-2pq,p!=0...

(" iv ")px^(2)+(2q-p^(2))x-2pq,p!=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of the equation px^(2)-qx+r=0, then the equation whose roots are alpha^(2)+(r)/(p) and beta^(2)+(r)/(p) is (i) p^(3)x^(2)+pq^(2)x+r=0 (ii) px^(2)-qx+r=0 (iii) p^(3)x^(2)-pq^(2)x+q^(2)r=0 (iv) px^(2)+qx-r=0

Let x^(2)-px+q=0, where p in R,q in R have the roots alpha,beta such that alpha+2 beta=0 then -(i)2p^(2)+q=0 (ii) 2q^(2)+p=0( iii) q<0 (iv) none of these

Add : 6p^(2)q - 5pq^(2) -3pq, 8pq^(2)+2p^(2)q -2pq

Add : 6p^(2)q - 5pq^(2) -3pq, 8pq^(2)+2p^(2)q -2pq

If Delta=|[0,q,r],[q,r,p],[r,p,q]|, then |[rq-p^(2),pr-q^(2),pq-r^(2)],[rp-q^(2),pq-r^(2),rq-p^(2)],[pq-r^(2),rq-p^(2),pr-q^(2)]| is equal to

If p, q, r are rational then show that x^(2)-2px+p^(2)-q^(2)+2qr-r^(2)=0

If p. q are odd integers. Then the roots of the equation 2px^(2)+(2p+q)x+q=0 are