Home
Class 12
MATHS
Let f(x)=min{x-[x|,-[-x)],-2lt=xlt=2,g(...

Let `f(x)=min{x-[x|,-[-x)],-2lt=xlt=2,g(x)=|2-|x-2||,-2lt=xlt=2 and h(x)=(|sinx|)/sinx,-2 leq x leq2 and x != 0` be three given functions where [x] denotes the greatest integer `leq x` Then The number of solution(s) of the equation `x^2+(f(x^))^2=1(-1 leq x leq 1)` is/are

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

If I=int_-1^1 ([x^2]+log((2+x)/(2-x)))dx where denotes the greatest integer leq x , then I equals

The number of real solutions (x, y) , where |y| = sin x, y = cos^-1 (cosx),-2pi leq x leq 2pi is

If f(x)= {(|1-4x^2|,; 0 lt= x lt 1), ([x^2-2x],; 1 lt= x lt 2):} , where [.] denotes the greatest integer function, then f(x) is

If f(x) = {{:(|1-4x^(2)|",",0 le x lt 1),([x^(2)-2x]",",1 le x lt 2):} , where [] denotes the greatest integer function, then

If f(x) = {{:(|1-4x^(2)|",",0 le x lt 1),([x^(2)-2x]",",1 le x lt 2):} , where [] denotes the greatest integer function, then

If f(x)={|1-4x^2|,0lt=x<1 and [x^2-2x],1lt=x<2 where [.] denotes the greatest integer function, then

If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] denotes the greatest integer function, then (x) is continuous at x=2

Let [t] denote the greatest integer lt t . The number of points where the function f(x) = [x]abs(x^2-1) + sin (pi/([x] + 3)) - [x + 1], x in (-2, 2) is not continuous is _________.

The number of integral values of x satisfying |x^2-1|leq3 is