Home
Class 10
MATHS
" Wis "3x^(2)-y-4...

" Wis "3x^(2)-y-4

Promotional Banner

Similar Questions

Explore conceptually related problems

Find each of the following products: (i) (4x - 7y) (4x - 7y) (ii) (3x^(2) - 4y^(2)) (3x^(2) - 4y^(2))

Q. 11 The solution of (dy)/(dx)=(2x-y+3)/(x+2y+4) is y^(2)-x^(2)+xy+4y-3x+1=C x^(2)-y^(2)+xy+4y+3x-1=C y^(2)-x^(2)-xy-4y+3x-1=C y^(2)-x^(2)+xy+4y-3x-1=C

The solution of the differential equation (dy)/(dx)+(x(x^(2)+3y^(2)))/(y(y^(2)+3x^(2)))=0 is (a) x^(4)+y^(4)+x^(2)y^(2)=c (b) x^(4)+y^(4)+3x^(2)y^(2)=c (c) x^(4)+y^(4)+6x^(2)y^(2)=c (d) x^(4)+y^(4)+9x^(2)y^(2)=c

Factorise : x^(4) + y^(4) - 3x^(2)y^(2)

From the sum of 3x+2x^2-y^2 and 6y-5y^2+3x^2+4x , subtract the sum of x^2-2y^2+3x-5y and 3x^2+2y^2-4x-y

Identify the type of conic section for each of the equations 1. 2x^(2) -y^(2) = 7 2. 3x^(2) +3 y^(2) -4x + 3y + 10 =0 3. 3x^(2) + 2y^(2) = 14 4. x^(2) + y^(2) + x-y=0 5. 11x^(2) -25y^(2) -44x + 50y - 256 =0 6. y^(2) + 4x + 3y + 4=0

If the circle x^(2)+y^(2)=a^(2) intersects the hyperbola xy=c^(2) in four points P (x_(1) ,y_(1)) Q (x_(2), y_(2)) R (x_(3) ,y_(3)) S (x_(4) ,y_(4)) then 1) x_(1)+x_(2)+x_(3)+x_(4)=2c^(2) 2) y_(1)+y_(2)+y_(3)+y_(4)=0 3) x_(1)x_(2)x_(3)x_(4)=2c^(4) 4) y_(1)y_(2)y_(3)y_(4)=2c^(4)

If" " x^(2) + y^(2) = 1, "show that, "(3x - 4x^(3))^(2) + (3y - 4y^(3))^(2) = 1.

The equation of diameter of a circle x^(2) + y^(2) + 2x - 4y =4 , that is parallel to 3x + 5y =4 is