Home
Class 12
MATHS
f(x) = 3x^10 – 7x^8+ 5x^6 -21x^3 + 3x^2 ...

`f(x) = 3x^10 – 7x^8+ 5x^6 -21x^3 + 3x^2 –7`, then is the value of `lim_(h->0) (f(1-h)-f(1))/(h^3+3h)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim_(h->0) (f(1-h)-f(1))/(h^3+3h)

Let f(x) = 3x^(10) - 7x^(8) + 5x^(6) - 21x^(3) + 3x^(2) - 7 . Then lim_(h rarr 0) (f(1-h)-f(1))/(h^(3) + 3h) equals :

Let f(x)=3x^(10)-7x+5x-21x^(3)+3x^(2)-7 , then the value of underset(h to 0)(Lt)(f(1-h)f(1))/(h^(3)+3h) is

Let f(x)=3x^(10)-7x^8+5x^6-21x^3+3x^2-7 . Then lim_(hto0)(f(1-h)-f(1))/(h^3+3h)

If f(x) =1/x , then show that lim_(hrarr0)(f(2+h)-f(2))/h=-1/4

Let f(x)=2x^(1//3)+3x^(1//2)+1. The value of lim_(hrarr0)(f(1+h)-f(1-h))/(h^(2)+2h) is equal to

Prove that lim_(x->0) (f(x+h)+f(x-h)-2f(x))/h^2 = f''(x)

If f(x) = x+3x^2+5x^4+7x^8+... to n terms then find the value of f'(1) .