Home
Class 11
MATHS
If cos28^0+sin28^0=k^3, t h e ncos17^0 ...

If `cos28^0+sin28^0=k^3, t h e ncos17^0` is equal to (a)`(k^3)/(sqrt(2))` (b) `-(k^3)/(sqrt(2))` (c) `+-(k^3)/(sqrt(2))` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos28^0+sin28^0=k^3, t h e ncos17^0 is equal to (k^3)/(sqrt(2)) (b) -(k^3)/(sqrt(2)) (c) +-(k^3)/(sqrt(2)) (d) none of these

If cos28^(0)+sin28^(0)=k^(3), thencos 17^(0) is equal to (a) (k^(3))/(sqrt(2))(b)-(k^(3))/(sqrt(2))(c)+-(k^(3))/(sqrt(2))(d) none of

If cos28^o +sin28^o =k^3 ,then cos17^o is equal

If cos 28^(@)+sin 28^(@)=k^(3) , then cos17^(@) equal to

If cos 28^(@) + sin 28^(@) = k^(3), then cos 17^(@) is equal to

int_(0)^( pi)|cos theta-sin theta|d theta is equal to (a) sqrt(2)(b)2sqrt(2)(c)3sqrt(3)(d) None of these

Let the equation of a curve be x=a(theta+sin theta),y=a(1-cos theta). If theta changes at a constant rate k then the rate of change of the slope of the tangent to the curve at theta=(pi)/(3) is (a) (2k)/(sqrt(3)) (b) (k)/(sqrt(3))(c)k(d) none of these

If the area enclosed between the curves y=kx^(2) and x=ky^(2), where k>0, is 1 square unit.Then k is: (a) (1)/(sqrt(3)) (b) (sqrt(3))/(2) (c) (2)/(sqrt(3))(d)sqrt(3)

If(4+sqrt(15))^((3)/(2))-(4-sqrt(15))^((3)/(2))=k sqrt(6), then k is