Home
Class 11
MATHS
sum(k=0)^10 Ck=2^(19)+1/2^(20)C10 Prove ...

`sum_(k=0)^10 C_k=2^(19)+1/2^(20)C_10` Prove that10= 219 +-120C10k=0

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that sum_(k=0)^10 20^C_k=2^(19)

sum_(k=0)^20(.^20C_k)^2 = ?

Find the sum sum_(k=0)^(10)2^(20)C_(k)

Find the sum sum_(k=0)^(10).^(20)C_k .

Find the sum sum_(k=0)^(10).^(20)C_k .

Find the sum sum_(k=0)^(10)^(20)C_kdot

The sum of series .^(20)C_0-^(20)C_1+^(20)C_2-^(20)C_3++^(20)C_10 is 1/2 .^(20)C_10 b. 0 c. .^(20)C_10 d. -^(20)C_10

sum_(k=0)^(20)(.^(20)C_(k))^(2) is equal to

sum_(k=0)^10 (2^k+3)^(10)C_(k)=alpha*2^10+beta*3^10 then value of alpha+beta

The value of sum_(r=0)^(10)(r)^(20)C_r is equal to: a. 20(2^(18)+^(19)C_(10)) b. 10(2^(18)+^(19)C_(10)) c. 20(2^(18)+^(19)C_(11)) d. 10(2^(18)+^(19)C_(11))