Home
Class 11
MATHS
Prove that (C1)/2+(C3)/4+(C5)/6+=(2^(n+1...

Prove that `(C_1)/2+(C_3)/4+(C_5)/6+=(2^(n+1)-1)/(n+1)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (C_1)/2+(C_3)/4+(C_5)/6+=(2^(n)-1)/(n+1)dot

Prove that (C_(1))/(2)+(C_(3))/(4) +(C_(5))/(6)+….=2^(n)/(n+1) where C_(r) =^(n)C_(r)

Prove that (C_1)/(2) + (C_3)/(4) + (C_5)/(6) + (C_7)/(8) + …… = (2^n - 1)/(n+ 1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3)x^(3) + ...+ C_(n)x^(n) , prove that (C_(1))/(2) + (C_(3))/(4) + (C_(5))/(6) + …= (2^(n+1)-1)/(n+1) .

Prove that (C_1)/1-(C_2)/2+(C_3)/3-(C_4)/4++((-1)^(n-1))/n C_n=1+1/2+1/3++1/ndot

Prove that (C_1)/1-(C_2)/2+(C_3)/3-(C_4)/4++((-1)^(n-1))/n C_n=1+1/2+1/3++1/ndot

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3)x^(3) + ...+ C_(n)x^(n) , prove that (C_(1))/(2) + (C_(3))/(4) + (C_(5))/(6) + …= (2^(n)-1)/(n+1) .

Prove that (C_1)/1-(C_2)/2+(C_3)/3-(C_4)/4+....+((-1)^(n-1))/n C_n=1+1/2+1/3+...+1/n

Prove that C_0+(C_1)/(2)+(C_2)/(3)+....+(C_n)/(n+1)=(2^(n+1)-1)/(n+1)

Prove that (i) C_(1)+2C_(2)+3C_(3)+……+nC_(n)=n.2^(n-1) (ii) C_(0)+(C_(1)/(2)+(C_(2))/(3)+….+(C_(n))/(n+1)=(2^(n+1)-1)/(n+1)