Home
Class 12
MATHS
Let x1 , x2 , x3,....., xk be the divis...

Let ` x_1 , x_2 , x_3,....., x_k` be the divisors of positive integer n (including 1 and n). If `x_1 + x_2 + x_3 + ...... + x_k = 75` Then ` sum_(i=1)^k (1/x_i)` is equal to (A) `75/k` (B)`75/n` (C) `1/n` (D)`1/75`

Text Solution

Verified by Experts

`sum_(i=1)^k(1/x_i)`
`1/x_1+1/x_2+1/x_3+1/x_4+...+1/x_k`
`x_k/n+x_(k-1)/n+...+x_2/n+x_1/n`
`x_k+x_(k-1)+...+x_2+x_1`
`=75/n`
Option B is correct.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let x_1 , x_2 , x_3,....., x_k be the divisors of positive integer n (including 1 and n). If x_1 + x_2 + x_3 + ...... + x_k = 75 Then sum_(i=1)^k (1/x_i) equal to (A) 75/k (B) 75/n (C) 1/n (D) 1/75

Let x_(1),x_(2),x_(3), . . .,x_(k) be the divisors of positive integer ' n ' (including 1 and x ). If x_(1)+x_(2)+ . . .+x_(k)=75 , then sum_(i=1)^(k)(1)/(x_(i)) is equal to:

Let x_(1),x_(2),x_(3), . . .,x_(k) be the divisors of positive integer ' n ' (including 1 and x ). If x_(1)+x_(2)+ . . .+x_(k)=75 , then sum_(i=1)^(k)(1)/(x_(i)) is equal to:

Let x_(1),x_(2),x_(3), . . .,x_(k) be the divisors of positive integer 'n' (including 1 and x). If x_(1)+x_(2)+ . . .+x_(k)=75 , then sum_(r=1)^(k)(1)/(x_(i)) is equal to

Let x_(1),x_(2),x_(3), . . .,x_(k) be the divisors of positive integer 'n' (including 1 and x). If x_(1)+x_(2)+ . . .+x_(k)=75 , then sum_(r=1)^(k)(1)/(x_(i)) is equal to

Let f (x ) = | 3 - | 2- | x- 1 |||, AA x in R be not differentiable at x _ 1 , x _ 2 , x _ 3, ….x_ n , then sum _ (i= 1 ) ^( n ) x _ i^2 equal to :

Let f (x ) = | 3 - | 2- | x- 1 |||, AA x in R be not differentiable at x _ 1 , x _ 2 , x _ 3, ….x_ n , then sum _ (i= 1 ) ^( n ) x _ i^2 equal to :