Home
Class 12
MATHS
" 11."sin^(-1)(1)/(sqrt(5))+sin^(-1)(1)/...

" 11."sin^(-1)(1)/(sqrt(5))+sin^(-1)(1)/(sqrt(10))=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1)""(2)/(sqrt(5))+sin ^(-1)""(1)/(sqrt(10))=(pi)/(4)

cot((sin^(-1)1)/(sqrt(5))+(sin^(-4)2)/(sqrt(5)))

Prove that: i) sin^(-1)(1/sqrt(5))+sin^(-1)(2/sqrt(5))=pi/2

The value of alpha so that sin^(-1)((2)/(sqrt(5))) , sin^(-1)((3)/(sqrt(10))) and sin^(-1)alpha are the angles of a Delta is

sin^(-1)(1/sqrt5)+cos^(-1)(3/sqrt(10))

The value of alpha such that sin^(-1)(2/(sqrt(5))),sin^(-1)(3/(sqrt(10))),sin^(-1)alpha are the angles of a triangle is

Prove that sin^(-1)""1/3+sin^(-1)""1/(3sqrt11)+sin^(-1)""(3)/(sqrt11)=pi/2

If sin^(-1)[(1)/(sqrt(10))]+sin^(-1)[(2)/(sqrt(85))]+sin^(-1)[(4)/(sqrt(1105))]+....oo= ,then find the value of tan alpha

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))